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Figure S1. Neural Mass Model Equations of Motion 

Morris Lecar-type differential equations (Moran et al. 2011) describing the time evolution of current and 

conductance at stellate cells (grey hexagon), inhibitory interneurons (purple circle) and pyramidal cells 

(green triangle). In this model, all cell types possess AMPA receptors, GABAA receptors are found at the 

stellate cells and pyramidal cells and NMDA receptors at pyramidal cells and inhibitory interneurons.  

 



 

 



Figure S2. Sensitivity Analysis 

(A) Here, we show the results of a contribution or sensitivity analysis, using the a posteriori estimates 

from the DCM of Memory trial data on and off L-Dopa from each subject. The results show the 

derivative of the predicted spectral response in the theta band with respect to the model’s key biophysical 

parameters; i.e. the deviation of power in the theta band (at 6 Hz) with small deviations (increases) in 

parameters, [γ1,3], [α], [γ3,2 ] and [u] encoding AMPA responses, NMDA nonlinearity, GABA responses 

and exogenous input respectively. Note that two of these parameters dominate in controlling the power of 

the theta response. These are the AMPA parameter and GABA parameter, which enhance and diminish 

the power at 6Hz respectively. These derivatives are several orders of magnitude greater than those for 

the NMDA or input parameters. However the NMDA nonlinearity is the only parameter that contributes 

differentially under L-Dopa and placebo. At the optimum parameters under L-Dopa, changes in the  

parameter lead to reduced diminution of theta, as compared to changes evaluated for the optimum 

parameters under the placebo condition (*p = 0.038 uncorrected; paired two-tailed t test over subjects). 

(B) Different sensitivity profiles for each parameter across the fitted spectral range. A sensitivity analysis 

across all frequencies shows that during memory maintenance AMPA channels, [γ1,3] differentially 

promote theta activity (peak at 5-6Hz), while small increases in the NMDA parameter], [α] also 

differentially effect theta/alpha bands (peak at 8Hz) but here the effect is to reduce the power at these 

frequencies. These AMPA effects are similar across the drug states, while the NMDA effect is greater for 

the L-Dopa network. A small increase in the GABA parameter, [γ3,2] reduces power at all but the highest 

frequencies, whereby a qualitative change in sensitivity occurs at low beta frequencies (~13-16 Hz). Here 

GABA promotes the spectral power. This effect is more pronounced for placebo relative to L-Dopa 

architectures. An increase in input [u] also promotes power, preferentially in the alpha band (peak at 7-

8Hz), where again this effect is higher in the placebo network.  
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Figure S3. Main Effect of Memory 

SPM of main effect of memory from source localized data rendered onto a canonical cortical surface, 

displayed at p < 0.01 uncorrected. Peak activity is observed in the right dorsolateral prefrontal cortex 

(peak x = 22, y = 52, z = 0; t = 3.95, p = 0.001 uncorrected within a mask comprising inferior, middle and 

superior frontal gyri). 
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Figure S4. Correlation between Performance and Theta Band Power 

Over subjects, individual performance increase on L-Dopa is inversely correlated with theta power 

(measured at the theta peak: 6Hz) for Memory relative to No Memory trials on drug relative to placebo. 

 



Supplemental Experimental Procedures 
 

MEG Analysis 

 

Task and MEG Acquisition 

MEG recordings were made in a magnetically shielded room using a 275-channel CTF system with 

SQUID-based axial gradiometers (VSM MedTech Ltd., Couquitlam, BC, Canada). The task involved a 

change-detection, visuo-spatial working memory task, where subjects retained a spatial array of colored 

squares [1] (see main text Figure 1A).  

 

Data Preprocessing and Statistical Analysis 

MEG data were epoched to obtain 4000 ms data segments corresponding to each trial’s delay period. Data 

were corrected for artifacts using thresholding and then down-sampled to 200Hz (the analysis routines 

used for the present paper are available in the academic open source package SPM8; 

http://www.fil.ion.ucl.ac.uk/spm/). 

 

SPM Analysis 

Time-Frequency characterizations from the maintenance period for frequencies from 2-60Hz were 

rescaled logarithmically and averaged across memory and drug conditions resulting in 4 three-

dimensional summary images per subject. These data were then converted to two-dimensional images by 

averaging within conventionally defined frequency bands, to produce band limited sensor  time 

representations at delta (2-4 Hz), theta (4 – 8 Hz), alpha (8 – 16Hz), beta (16 – 32 Hz) and gamma (33 - 

60) frequencies. We computed a Memory – No Memory contrast image for each subject and entered these 

into a second-level (between subject) random effects SPM analysis using a one-sample t test. Using an 

uncorrected statistical threshold of p < 0.01 and a cluster size of ten pixels, we observed an increase in 

sustained activity at particular bands during memory retention (Figure 1C). 

 For our source space analysis, the inverse solution was calculated using a time window from 800 – 

3200 ms during the maintenance period. SPM8’s multiple sparse priors routine was used to estimate the 

cortical source of this activity [2]. A contrast of response power over 2 – 16Hz (the frequencies of interest 

obtained from the sensor level analysis) was computed for each memory and drug condition separately. 

Source activity measures were then interpolated into MNI voxel space [3]. We then tested for two effects 

of interest in source space, within an a priori region of interest, (comprising inferior, middle and superior 

frontal gyri) employing a random effects SPM analysis as above, using one sample t tests across subjects. 

This region was defined anatomically, using a mask image from the Wake Forest University PickAtlas 

[4]. After localizing these effects, we examined the effects of memory retention independent of the drug 

condition; using subject-specific contrast images for average [Memory – No Memory] conditions and the 

effects of drug on memory retention, to examine the interaction [(Memory – No Memory)L-Dopa – 

(Memory – No Memory)placebo].  

 

Source Extraction 

For a smooth estimate of the delay period signal from SFG (centered on x = 32, y = 4, z = 68; MNI 

coordinates), we employed FieldTrip’s beamforming source extraction method with regularization of 

0.01% (http://www.ru.nl/neuroimaging/fieldtrip/). Frequency domain representations were constructed 

from this signal in the time window 800 – 3200 msec. These spectral responses, which were consistent 

with previous electrophysiological studies of working memory [5-7], were used for the inversion of our 

DCM.  

http://www.fil.ion.ucl.ac.uk/spm/
http://www.ru.nl/neuroimaging/fieldtrip/


Dynamic Causal Modeling 

The principle of applying a mathematical model to infer the likely causes of measurements underpins 

many neurophysiological analyses, for example general linear or dynamic models that relate 

hemodynamic measurements [8] to underlying neuronal population activity. Dynamic Causal Modeling 

(DCM) is one such framework that employs Bayesian techniques to infer hidden (unobservable) neuronal 

mechanisms and architectures from neuroimaging or electrophysiological data [9]. 

 Our mean-field model predicting neural activity in the SFG was based on the Morris-Lecar model 

[10]. The dynamics of postsynaptic responses are described in analogy to an equivalent RC circuit where, 

using Kirchhoff’s current law, capacitive synaptic current flow equals the summed active and passive 

currents across the membrane [11,12]. The active currents across the postsynaptic membrane include 

ligand-gated excitatory (Na
+
) and inhibitory (Cl

-
) ion flow mediated by fast AMPA and GABAA receptors 

and slower NMDA receptors [22], depending on cell type. The magnesium block of NMDA receptors 

requires a sufficient transmembrane potential difference for its removal, and hence these channels are 

voltage-gated and non-linear. In our model, the NMDA conductance is augmented by a parameterized 

nonlinear sigmoid gain function fMG(V) (Eq. S1). Reversal potentials VE, VI and VNMDA, were fixed at 60 

mV, -90 mV and 60 mV, respectively, and membrane capacitance at 8 uF. A potassium leak current was 

used to account for all passive ionic currents, with reversal potential VL of -70 mV. The model also 

included a driving current input u, entering at the granular layer:  
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The conductances of the ligand-gated ion channels in our model are described by additional differential 

equations. These conductances g reflect the number of open channels, which are hidden states that depend 

on the presynaptic input ς, the coupling of presynaptic input to the postsynaptic response γ, the number of 

open channels and the channel’s time-constant ( /1 ) with prior values of 4 ms, 16 ms and 100 ms, for 

AMPA, GABAA and NMDA receptors respectively.  
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These dynamics at the single neuron level are stochastic, with the term Г denoting Gaussian state-noise 

(fluctuations). As established by Marreiros et al [12], we can transform these single-neuron stochastic 

dynamics to a deterministic generative model of ensemble or population dynamics using the Fokker-

Planck formalism. For the DCM, the prefrontal cortical region comprises three neuronal populations [13, 

14], excitatory spiny stellate cells, pyramidal cells and inhibitory interneurons, coupled through intrinsic 

synaptic connections (see main text Figure 1D and Figure S1) with fast AMPA and GABAA receptors in 

all populations and NMDA receptors in pyramidal and inhibitory populations [15]. In a system of 

connected neuronal ensembles, the input to an ensemble i is the expected firing rate from the source 

ensemble j: The coupling of this presynaptic input to a postsynaptic response is represented by the 

parameter γi,j which subsumes various biophysical processes such as receptor binding and transmitter 

reuptake. 
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The sigmoid function )(  represents the cumulative distribution function of the presynaptic 

depolarization density, V =
( ) ( )( , )j j

, around a threshold potential RV = -40mV, which determines 

the proportion of afferent cells firing (see Marreiros et al).  

 Given this set of differential equations we can apply their associated transfer functions in frequency 

space to the power spectrum of fluctuating inputs and predict the output spectrum. This allows us to 

establish a mapping from the system parameters to the predicted frequency spectrum [11]. Together with 

plausible assumptions about the form of the spectrum of neuronal fluctuations, this mapping furnishes a 

likelihood model that can be combined with prior densities on the parameters to yield a generative model 

of spectral responses (for details, see Moran et al. 2011). This model can be inverted (i.e.,, fitted to 

measured data; here the spectral density from the cortical source) to obtain the posterior densities of the 

parameters. In DCM, a variational Bayesian scheme (Variational Laplace) is used to approximate the 

posterior density over parameters by maximizing the negative free energy; a bound on the log-model 

evidence; see [16] for details. The parameters operate as scaling values on preset values [12]. Free 

parameters include gains on each channel’s time constant ( /1 ), intrinsic coupling measures γi,j, extrinsic 

cortical input u, the NMDA channel nonlinearity parameter α and neuronal noise, represented by a 

mixture of white and pink noise components (parameter set A). Based on known neurophysiological 

effects of dopamine on different ion channels, a subset of these parameters was augmented by additional 

condition-specific scaling parameters to allow for drug-specific effects. These modulatory parameters 

(parameter set B) included changes in stellate to pyramidal cell coupling via AMPA and NMDA receptors 

(γ3,2), pyramidal to pyramidal cell coupling via AMPA and NMDA receptors (γ3,3), pyramidal to stellate 

cell connectivity via AMPA receptors only (γ1,3), inhibitory interneuron to pyramidal cell coupling via 

GABAA receptors (γ3,2), the NMDA nonlinearity (α) and extrinsic cortical input (u). The B parameters 

could take positive or negative values, representing an increase or decrease of the corresponding A 

parameters under L-Dopa. Prior densities on all parameters were found from a first pass of DCM for all 

subjects, where the posteriors from the best data-fit were used as priors in all subsequent analyses.  
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